Name: \qquad

Mental Math
Start with the number 9 .

- Add the number of pennies in a dollar.

7109956453 (Circle your answer to double check you are correct.)

- Round to the nearest ten.

3026431107

- Increase that number by 10 .

8095120640
\square Add one-third of a dozen.
4151249662

- Subtract 28.

4984696220
\qquad

If Increase that number by 11.
4126937265

\% Add 48.
5324606831
If Divide by 10 .
1442544634
\& Round to the nearest ten.
6509485237
\& Subtract the number of inches in 2 feet.

Name:
Make a path by adding up the numbers. Do not visit a circle more than once. The first one is done.

$(1919$

$17+\underline{+}$ \qquad
\qquad
\qquad
$9+\underline{8}+\underline{3}+\underline{7}+\underline{6}+\underline{3}+$
$\underline{2}+\underline{1}+\underline{1}+\underline{3}=43$

Did you find a path? Write the equation.

Name: \qquad
Make change. You can use $\$ 20, \$ 10, \$ 5, \$ 1,25 \llbracket, 10 \llbracket, 5 \llbracket$, or $1 \uparrow$.
Make $\$ 57.43$ any way you want!

Make $\$ 23.28$ any way you want!

Make $\$ 17.15$ any way you want!

Make $\$ 34.48$ any way you want!

Name:

| 56 | -3 | | -17 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| $1 \mathrm{~kg}=1,000 \mathrm{~g}$ |
| :--- | :--- |
| $13 \mathrm{~kg}=\ldots \mathrm{g}$ | | 804 |
| ---: |
| -652 |

Add the correct end punctuation for this sentence.
Did you watch the president's speech last night

Name:

Jack arrived at the ice cream shop at 12:50 p.m. He bought a black cow root beer float. He drank the float and left after 26 minutes. At what time did he leave the ice cream shop?

Uncle Allen walked to school when he was a child. He said it was fun, especially in the winter. Then he and his best friend had snowball fights on the way! It took them 18 minutes to walk to school. If school started at 8:30 a.m., what time did they have to leave home to get to school on time?

David has an appointment with his doctor at 3:00 p.m. He has to get a physical so he can play football. It is 1:20 p.m. now and it will take him 45 minutes to get to the doctor's office. How long can he play a video game before he has to leave to get to the appointment on time?

Write 3,757 in words.

$$
\begin{array}{r}
491 \\
+490 \\
\hline
\end{array}
$$

Can 860 be evenly divided by 4? Circle:
860 is evenly divisible by 4 860 is NOT evenly divisible by 4

Emma was given four numbers: 8, 7 , 14, and 15. She needs to use two of these numbers to make a fraction. Can she make a fraction that is less than five-sixths?

Name:

Write the missing family fact.
$9 \times 23=207$
$207 \div 23=9$
$23 \times 9=207$

$13 \mathrm{~cm}=\ldots \mathrm{mm}$	37 +25

| 49 |
| :---: | :---: | :--- |
| -38 |\quad| Circle the smallest number: |
| :--- |
| 1,486 |
| $581,902,764$ |
| $891,652,347,046$ |
| $5,281,370$ |\quad| How far do you think it is |
| :--- |
| from the ground to your |
| chin? Write an estimate of |
| the distance you think it |
| could be. |

How many grams are in
$5 \times 6=$

How many digits are in 1,000 times 10,000?

$5 \times 6=$	Emma will win if a random number pulled out of a box is a multiple of 3. 33 pieces of paper, numbered 48 to 80, are put inside a box. What is the chance that Emma will win?	$3 \times 5=$

Name:

Name:
$2 \cdot 3 \cdot 5 \cdot 5 \cdot \div \cdot 5 \cdot=\cdot 1 \cdot \div \cdot 0 \cdot 1 \cdot 6 \cdot 9$
Use the pieces above to help you fill in the runaway math puzzle.

What Words? Your Words!
Fill in the boxes with letters to make words. Each box is worth points. Earn points by filling in as many boxes as you can. Sum up the points you earn for each word.

Make a Word

Sum
23

Sum

Name:
Use ALL of these digits, including the decimal point. Cross off a digit after you use it.

Write a number that is closest to 70 .

Rose and Sara each have a soccer game at 8 a.m. on different fields. Rose's soccer field is 114 yards long. Sara's soccer field is 358 feet long. Which field is longer and by how much?

The number 649 is the largest whole number that, when rounded to the nearest
\qquad will be 600 .

Name: \qquad
Here is a chart on turns to help you answer the questions.
A $\frac{1}{4}$ turn is 90°.
A $\frac{1}{2}$ turn is 180°.
A $\frac{3}{4}$ turn is 270°.

A full turn is 360°.

From the start position the pointer turns $\frac{3}{4}$ clockwise. Draw the arrow for the end position.

The start and end positions are shown. Explain the turn that was made.

An angle that is 329 degrees is

From the start position the pointer turns $\frac{3}{4}$ clockwise. Draw the arrow for the end position.

From the start position the pointer turns 90° clockwise. Draw the arrow for the end position.

Ashley is playing a game. She stands in the middle of a circle.

At the start of the game she faces south. Then she makes a $\frac{1}{4}$-turn counterclockwise. In which direction is she now facing?

Name:
Simplify each fraction. Draw lines between equal fractions.

$\frac{42}{77}$		
$\frac{1}{2}$		
$\frac{24}{33}$		
$\frac{66}{72}$		

A rectangle is 32 cm on
one side and 6 cm on
another side. What is the
perimeter?
What is the area of a rectangle with sides 5 cm and 6 cm ?

$$
5 \frac{3}{6}+2 \frac{5}{6}
$$

$$
5 \div \frac{1}{8}
$$

It was 7 degrees below zero in the morning. By afternoon the temperature rose 23 degrees. How warm was it?
$26,39,52,65,78,91,104$,
\qquad , 130, 143

Circle the three numbers

 whose product equals 324.$\begin{array}{lll}6 & 7 & 12\end{array}$
398

Estimate quickly the difference.
4,310-2,400

Name: \qquad
Sketch 2 lines $\overleftrightarrow{K L}$ and $\overleftrightarrow{X Y}$ that are perpendicular.

What kind of angle is this?

Name 3 angles.
Name 2 pairs of intersecting lines.

SkABE.a right angle named \angle

What kind of angle has a measure of 180° ?

Name:
Holly likes to multiply a number by itself. Why? Nobody knows!
"If I take my favorite number and multiply it by itself, the product will be only 12 away from
16. Can you guess my favorite number?" asks Holly.

Write as a decimal. $17 \frac{497}{1000}$
$10 \div \frac{1}{3}$

How much money is 1 quarter, 1 dime, 4 nickels, and 1 penny?

Write as a decimal. Sixteen hundredths

How many meters are there in 135 kilometers?

Circle the words that best complete the sentence.
($\mathrm{In} / \mathrm{Inn}$) the end, I am sure that I will (pass/past) Language Arts.

What is the homophone of this word? navel

Name:
Wendy likes to multiply a number by itself. Why? Nobody knows!
"If I take my favorite number and multiply it by itself, the product will be only 16 away from
97. Can you guess my favorite number?" asks Wendy.

Change to a percent. $\frac{1}{10}$
$7 \frac{5}{9}+5 \frac{6}{9}$
The perimeter of a rectangle is 20 cm . The

Round 6,308 to the nearest longer side is 7 cm . How long is the shorter side?
$(3+4)+6=$

Add the correct end punctuation for this sentence.
Please bring that stack of books to me

Name:
Add one set of parenthesis to each equation so that the equation is true.

$$
\begin{aligned}
& (7+2)+2=11 \\
& 10+6 \times 11=76 \\
& 3+12 \times 5=63 \\
& 6 \div(4-1)=2 \\
& 10+6 \times 11=176 \\
& 3+12 \times 5=75 \\
& 10-2 \times 8=64 \\
& 3 \times 12+1+4=43 \\
& 12-2+3 \div 3=11 \\
& 12 \times 12-3+11=152 \\
& 7+3 \times 4+6=25 \\
& 7-3+1 \times 3=7 \\
& 8+4+1 \times 5=17 \\
& 11 \div 11+9+2=12 \\
& 8-3+1+1=7 \\
& 11 \div 11+11+6=18 \\
& 10+9+11-3=27
\end{aligned}
$$

Name:
Cross off the number that does NOT belong.

$$
\begin{aligned}
& \frac{1}{16807}, \frac{1}{2401}, \frac{1}{343}, \frac{1}{49}, \\
& \frac{1}{7},(1),(6),(7) \\
& \text { (49), (343), (2,401) }
\end{aligned}
$$

\qquad not belong in the pattern?

Cross off the number that does NOT belong.

$$
\begin{aligned}
& 3 \frac{10}{25}, 3 \frac{5}{25}, 3,2 \frac{20}{25}, 2 \frac{15}{25}, 2 \frac{12}{25}, 2 \frac{10}{25}, 2 \frac{5}{25}, 2, \\
& 1 \frac{20}{25}, 1 \frac{15}{25}, 1 \frac{10}{25}, 1 \frac{5}{25}, 1, \frac{20}{25}, \frac{15}{25}, \frac{10}{25}
\end{aligned}
$$

Why does \qquad not belong in the pattern?

Name:
Only use a pencil to write the numbers on the blank lines. You do not need any scrap paper! Solve it in your head. If you forget a number, then start over. Cool, huh?

imagine 9 in your head add 7 add 9	
$\frac{\text { Write the ones digit. }}{}$	Amagine 7 in your head add 6 subtract 6 subtract 2 subtract 5 add 2
Write the number.	

imagine 6 in your head add 5 double it subtract 6 add 4	
Add the tens digit to the ones digit. Write the sum.	imagine 8 in your head double it subtract 9 add 2

What is the sum?

$$
A+B+C+D
$$

Wow! Great job! That's the answer, but do you know how to SPELL the number?

4 after 17 \qquad 7 before 19 \qquad 6 before 12 \qquad

9 after 16 \qquad 3 before 16 \qquad 4 before 11 \qquad

6 after 14 \qquad 2 before 13 \qquad 8 before 18 \qquad

Name: \qquad

This puzzle has a large number in the middle, which is the sum of the four numbers that surround it.
Example:
Example:

$$
4.4+25.4+2.6+0.7=33.1 \quad 0.7+23.5+3.7+4.4=32.3
$$

Fill in the missing numbers. How? The sum of the four surrounding numbers is in the center of each square.
Exactly one of the four numbers has to be one of these numbers: 23.5, 24.6, or 25.4. The other three numbers have to all be DIFFERENT and must be from these: $4.4,5.5$, 0.7, 2.6, 3.7, 1.2, or 7.7.

Name: \qquad
Fill in the missing numbers. How? The sum of the four surrounding numbers is in the center of each square.
Exactly one of the four numbers has to be one of these numbers: 24.2, 21.8, or 12.4. The other three numbers have to all be DIFFERENT and must be from these: 3.1, 5.1, 4.9, 6.4, 1.6, or 2.2.

\qquad Date

Start on the \mathbf{B} circle. Do not pick up your pencil. Draw a line going left, right, up, or down. Every line must end on a circle. No stopping on an empty box. Try to collect all the circles and finish your last line on the \mathbf{E} circle. You can go through a circle more than once.
(s)

Didn't get them all? That's ok. This was hard.
\qquad circle(s).

