Name:
Complete each pattern. Write what the rule is.

60	55	50
45		35
30	25	
15	10	

Find the missing numbers. These both have the same rule. What is the rule? If
$1,7=7$
$4,7=28$
$2,9=18$
$5,9=45$
$3,11=33$
$6 \cdot 12=72$
$4,15=60$
$7,14=98$
Then
$5,17=$?
Then
$8,19=$?

Name:

Name:

X		3	7		4		
	\times	$\times 3$	56 $\ldots \times 7$	x	$\times 4$	$\begin{array}{\|c} 48 \\ -\times \\ \hline \end{array}$	\times
		$\begin{array}{r} 9 \\ \times 3 \\ \hline \end{array}$	- $\times 7$	-x	$\begin{gathered} 12 \\ =\times 4 \end{gathered}$	-x	-x
		-x 3	- 7	—×	$\begin{array}{r} 24 \\ \times \times 4 \end{array}$	-x	
6	$\begin{array}{r} 24 \\ 6 \times= \end{array}$	$\underline{6} \times 3$	$\begin{array}{r} 42 \\ 6 \times 7 \\ \hline \end{array}$	$\underline{6} \times=$	$\underline{6} \times \underline{4}$	$\underline{6} \times$	$\begin{array}{r} 30 \\ 6 \times 6 \end{array}$
2	$\underline{2} \times$	$\underline{2} \times \underline{3}$	$\underline{2} \times 7$	$\underline{2} \times$	$\underline{2} \times \underline{4}$	$\begin{array}{r} 12 \\ \underline{2} \times=1 \end{array}$	$\underline{2} \times$
3	$\underline{3} \times$	$\underline{3} \times \underline{3}$	$\underline{3} \times 7$	$\begin{array}{r} 6 \\ 3 \times-= \\ \hline \end{array}$	$\underline{3} \times \underline{4}$	3 \times	$\underline{3} \times$
9	9 C	$\underline{9} \times \underline{3}$	$\underline{9} \times 7$	$\underline{9} \times$	$\underline{9} \times \underline{4}$	$\begin{gathered} 54 \\ 9 \times \\ \hline 9 \end{gathered}$	$\underline{9} \times$
	20	-_x 3	- $\times 7$	- \times -	_-x 4	-x	-x

Round the number to the
place value of the BIG number.
56,785
Name the polygon that has ten vertices.

Name:

Robert and his father went to King Frog's Barbeque Shack. Robert had a barbequed pork sandwich, french fries, and a small drink for \$5.85. His father had a barbequed beef sandwich, a baked sweet potato, and a cup of coffee for $\$ 7.15$. How much did their lunches cost in all?

The fifth grade students are having a breakfast for their parents for Children's Good Manners Month. Ava used a muffin pan to make 4 batches of muffins. Then she made 2 extra muffins. She made 34 muffins in all. How many muffins does the muffin pan hold?

Anne and her mother planned to take tulips to the hospital for the 15 new mothers there. For each mother, Anne made a bouquet of 3 tulips and tied them together with pretty red and white ribbon. How many tulips did she need to make the bouquets?

Name: \qquad

Sudoku Sums of 8

Each row, column, and box must have the numbers 1 through 6 . Hint: Look for sudoku sums. The sum of the two boxes inside of the dashed lines is 8 .

Here is an example of a sudoku sum of 8 :

Add one hundred to 135.	What is the value of the BIG digit?$12,369,745$	Color 0.52.					
			\square				\square
							$\square 1$

Name: \qquad
\square
Use the pieces above to help you fill in the runaway math puzzle.

Name:

$\begin{array}{r} 166.609 \\ -91.922 \\ \hline \end{array}$	$\begin{array}{r} 128,967 \\ -81.834 \\ \hline \end{array}$	$\begin{array}{r} 75.591 \\ +14.534 \\ \hline \end{array}$
$\begin{array}{r} 55.024 \\ +68.636 \\ \hline \end{array}$	$\begin{array}{r} 22.947 \\ +60.185 \\ \hline \end{array}$	$\begin{array}{r} 144.886 \\ -93.875 \\ \hline \end{array}$
$\begin{array}{r} 73.135 \\ +66.239 \end{array}$	$\begin{array}{r} 185,651 \\ -92,3755 \end{array}$	$\begin{array}{r} 14.957 \\ +95.039 \end{array}$
$\begin{array}{r} 60.690 \\ -\quad 19.272 \\ \hline \end{array}$	$\begin{array}{r} 22.499 \\ +91.587 \\ \hline \end{array}$	$\begin{array}{r} 112.444 \\ -51.440 \\ \hline \end{array}$
$\begin{array}{r} 82.267 \\ -45.211 \\ \hline \end{array}$	$\begin{array}{r} 68,969 \\ +50,311 \\ \hline \end{array}$	$\begin{array}{r} 40.849 \\ +19.483 \\ \hline \end{array}$
$\begin{array}{r} 52.390 \\ +57.691 \\ \hline \end{array}$	$\begin{array}{r} 91.682 \\ -71.921 \\ \hline \end{array}$	$\begin{array}{r}66.494 \\ -27.449 \\ \hline\end{array}$
$\begin{array}{r} 65.411 \\ -\quad 17.198 \\ \hline \end{array}$	$\begin{array}{r} 110.833 \\ -89.985 \\ \hline \end{array}$	$\begin{array}{r} 157.517 \\ -91.202 \\ \hline \end{array}$

Name: \qquad

$$
3 \bullet+\bullet 2 \bullet+\bullet 1 \cdot 8 \cdot 8 \cdot 2 \bullet=\bullet 6 \bullet 3 \cdot 1 \bullet 1 \bullet=\bullet 7 \bullet-7
$$

Use the pieces above to help you fill in the runaway math puzzle.

Name:

$\nabla 8 \times 9=72$
$\begin{array}{lllllllllllllll}48 & 4 & 36 & 8 & 110 & 1 & 17 & 28 & 72 & 110 & 9 & 1 & 97 & 19 & 29\end{array} 20$
$\square 12 \times 8=$
$\square 10 \times 3=$
$\square 7 \times 5=$
$\square 12 \times 4=$
$\square 6 \times 12=$
$\square 9 \times 5=$
$\square 6 \times 4=$ $\begin{array}{lllllllllllllll}12 & 44 & 12 & 18 & 15 & 8 & 30 & 3 & 10 & 3 & 7 & 10 & 6 & 21 & 20 \\ 8\end{array}$ $\begin{array}{lllllllllllllll}22 & 12 & 0 & 4 & 6 & 10 & 19 & 45 & 19 & 44 & 10 & 27 & 5 & 6 & 12 \\ 72\end{array}$ $\begin{array}{lllllllllllllll}17 & 10 & 72 & 71 & 48 & 1 & 6 & 11 & 12 & 11 & 9 & 6 & 4 & 12 & 7 \\ 36\end{array}$ $\begin{array}{llllllllllllllll}10 & 3 & 28 & 9 & 28 & 12 & 24 & 73 & 14 & 13 & 10 & 19 & 10 & 71 & 3 & 48\end{array}$ $\begin{array}{llllllllllllll}20 & 10 & 24 & 100 & 34 & 10 & 12 & 9 & 12 & 8 & 96 & 3 & 24 & 12 \\ 3 & 24\end{array}$ $\begin{array}{llllllllllllllll}72 & 4 & 7 & 15 & 6 & 19 & 2 & 8 & 6 & 100 & 4 & 36 & 1 & 100 & 10 & 10\end{array}$
 $\begin{array}{lllllllllllllll}13 & 20 & 4 & 24 & 2 & 17 & 21 & 14 & 10 & 35 & 72 & 35 & 12 & 16 & 71 \\ 12\end{array}$ $\begin{array}{lllllllllllllll}15 & 9 & 8 & 35 & 10 & 27 & 97 & 6 & 5 & 12 & 18 & 8 & 37 & 34 & 8 \\ 30\end{array}$ $\begin{array}{lllllllllllllll}13 & 19 & 3 & 45 & 5 & 36 & 23 & 7 & 15 & 11 & 5 & 20 & 6 & 12 & 27 \\ 35\end{array}$ $\begin{array}{llllllllllllllll}36 & 5 & 5 & 29 & 3 & 5 & 16 & 13 & 4 & 36 & 2 & 25 & 15 & 2 & 3 & 100\end{array}$ $\square 11 \times 10=$ $\begin{array}{lllllllllllllll}10 & 9 & 9 & 12 & 96 & 7 & 4 & 2 & 28 & 15 & 45 & 17 & 5 & 96 & 14\end{array} 13$ $\begin{array}{lllllllllllllll}8 & 10 & 13 & 30 & 7 & 5 & 9 & 12 & 10 & 10 & 17 & 20 & 30 & 9 & 24 \\ 5\end{array}$

Write

operation.

Write $=$ sign.

$\square 7 \times 10=70$
$\square 6 \times 3=$
$\square 8 \times 3=$
$\square 2 \times 4=$
$\square 3 \times 12=$
$\square 6 \times 10=$
$\square 4 \times 8=$
$\square 6 \times 8=$
$\square 9 \times 3=$
$\square 8 \times 10=$
$\square 8 \times 7=$
$\begin{array}{llllllllllllllll}7 & 3 & 28 & 17 & 17 & 81 & 8 & 6 & 4 & 14 & 17 & 6 & 10 & 4 & 5 & 8\end{array}$ $\begin{array}{lllllllllllllll}2 & 24 & 7 & 18 & 3 & 6 & 8 & 8 & 48 & 26 & 48 & 10 & 4 & 3 & 16 \\ 6\end{array}$ $\begin{array}{lllllllllllllll}80 & 10 & 8 & 8 & 7 & 5 & 31 & 7 & 3 & 8 & 60 & 10 & 6 & 8 & 14 \\ 32\end{array}$ $\begin{array}{lllllllllllllll}70 & 6 & 10 & 56 & 7 & 12 & 12 & 8 & 6 & 25 & 7 & 15 & 12 & 18 & 32\end{array}$ $\begin{array}{lllllllllllllll}11 & 14 & 79 & 17 & 3 & 56 & 2 & 20 & 14 & 5 & 10 & 8 & 4 & 56 & 17 \\ 4\end{array}$ $\begin{array}{llllllllllllllll}17 & 17 & 6 & 6 & 3 & 9 & 11 & 16 & 6 & 10 & 10 & 24 & 2 & 3 & 9 & 2\end{array}$ $\begin{array}{lllllllllllllll}4 & 57 & 33 & 27 & 12 & 31 & 69 & 8 & 60 & 9 & 7 & 16 & 6 & 6 & 8 \\ 5\end{array}$ $\begin{array}{llllllllllllllll}29 & 2 & 4 & 8 & 12 & 3 & 12 & 28 & 8 & 1 & 15 & 9 & 8 & 79 & 3 & 33\end{array}$ $15 \quad 7 \times 10=7010 \begin{array}{lllllllllll}11 & 12 & 8 & 3 & 25 & 2 & 80 & 14 & 31 & 8 & 18\end{array}$ $\begin{array}{lllllllllllllll}10 & 8 & 3 & 9 & 4 & 29 & 3 & 36 & 5 & 48 & 12 & 12 & 5 & 69 & 27\end{array} 22$ $\begin{array}{lllllllllllllll}16 & 36 & 4 & 12 & 10 & 24 & 9 & 8 & 12 & 8 & 3 & 70 & 12 & 9 & 3\end{array}$ $\begin{array}{llllllllllllllll}3 & 2 & 9 & 8 & 6 & 23 & 6 & 4 & 79 & 28 & 23 & 17 & 11 & 3 & 12 & 17\end{array}$ $\begin{array}{lllllllllllllll}15 & 2 & 80 & 3 & 11 & 10 & 32 & 18 & 12 & 24 & 25 & 60 & 4 & 27 & 21\end{array}$

Name: \qquad
Find the way from START to END by passing only through numbers that are multiples of five.
You are not allowed to go diagonally. Good luck!

START	435	929	262	219	223	877
103	515	611	942	114	691	778
993	855	82	144	133	204	844
589	740	959	751	594	538	8
80	925	797	188	131	784	798
865	905	993	21	252	36	836
955	350	855	250	382	87	899
665	910	30	275	230	735	855
104	958	786	308	295	925	765
311	956	207	702	886	887	END

Name:
Russia, Austria, and Switzerland competed in a two-run bobsled competition.
The times on the first run were two minutes and 5.52 seconds, two minutes and 5.41 seconds, and two minutes and 5.21 seconds.
The times on the second run were two minutes and 4.28 seconds, two minutes and 4.70 seconds, and two minutes and 5.01 seconds.

Figure out the time needed for each run and the combined run time for each team.

1. On the second run, the team from Austria was ninety-three hundredths of a second faster than their first run.
2. The team from Switzerland needed more than two minutes and 4.39 seconds to finish the second race.
3. On the first run, the team from Russia was twenty hundredths of a second behind the winners of the first run.
4. The team that finished the first run in two minutes and 5.52 seconds was not the team that finished the second run in either two minutes and 5.01 seconds or two minutes and 4.28 seconds.

Russia finished the first run in \qquad and the second in \qquad
Austria finished the first run in \qquad and the second in \qquad
Switzerland finished the first run in \qquad and the second in \qquad

Write the length in centimeters.

Circle the relative adverb.
This is the school where I went to kindergarten.

